An Amylase-Like Protein, AmyD, Is the Major Negative Regulator for α-Glucan Synthesis in Aspergillus nidulans during the Asexual Life Cycle

نویسندگان

  • Xiaoxiao He
  • Shengnan Li
  • Susan Kaminskyj
چکیده

α-Glucan affects fungal cell-cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans. However, the underlying molecular mechanism was not clear. Here, we examined the localization of AmyD and found it was a membrane-associated protein. We studied AmyD function in α-glucan degradation, as well as with other predicted amylase-like proteins and three annotated α-glucanases. AmyC and AmyE share a substantial sequence identity with AmyD, however, neither affects α-glucan synthesis. In contrast, AgnB and MutA (but not AgnE) are functional α-glucanases that also repress α-glucan accumulation. Nevertheless, the functions of AmyD and these glucanases were independent from each other. The dynamics of α-glucan accumulation showed different patterns between the AmyD overexpression strain and the α-glucanase overexpression strains, suggesting AmyD may not be involved in the α-glucan degradation process. These results suggest the function of AmyD is to directly suppress α-glucan synthesis, but not to facilitate its degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores

Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fung...

متن کامل

Aspergillus nidulans Cell Wall Composition and Function Change in Response to Hosting Several Aspergillus fumigatus UDP-Galactopyranose Mutase Activity Mutants

Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and w...

متن کامل

Asexual sporulation in Aspergillus nidulans.

The formation of mitotically derived spores, called conidia, is a common reproductive mode in filamentous fungi, particularly among the large fungal class Ascomycetes. Asexual sporulation strategies are nearly as varied as fungal species; however, the formation of conidiophores, specialized multicellular reproductive structures, by the filamentous fungus Aspergillus nidulans has emerged as the ...

متن کامل

The Role, Interaction and Regulation of the Velvet Regulator VelB in Aspergillus nidulans

The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB's role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, ...

متن کامل

The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans

The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia, the integrity of which is governed by the NF-κB type velvet regulators VosA and VelB. The VosA-VelB hetero-complex regulates the expression of spore-specific structural and regulatory genes during conidiogenesis. Here, we characterize one of the VosA/VelB-activated developmental genes, cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017